Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide.

نویسندگان

  • Leshern Karamchand
  • Gwangseong Kim
  • Shouyan Wang
  • Hoe Jin Hah
  • Aniruddha Ray
  • Ruba Jiddou
  • Yong-Eun Koo Lee
  • Martin A Philbert
  • Raoul Kopelman
چکیده

Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivalent Targeting Based Delivery of Therapeutic Peptide using AP1-ELP Carrier for Effective Cancer Therapy

Elastin-like polypeptide (ELP)-based drug delivery has been utilized for various applications including cancer therapies for many years. Genetic incorporation of internalization ligands and cell-targeting peptides along with ELP polymer enhanced tumor accumulation and retention time as well as stability and activities of the drug conjugates. Herein, we described a unique delivery system compris...

متن کامل

Tetrameric far-red fluorescent protein as a scaffold to assemble an octavalent peptide nanoprobe for enhanced tumor targeting and intracellular uptake in vivo.

Relatively weak tumor affinities and short retention time in vivo hinder the application of targeting peptides in tumor molecular imaging. Multivalent strategies based on various scaffolds have been utilized to improve the ability of peptide-receptor binding or extend the clearance time of peptide-based probes. Here, we use a tetrameric far-red fluorescent protein (tfRFP) as a scaffold to creat...

متن کامل

Preparation and characterization of different liposomal formulations containing P5 HER2/neu-derived peptide and evaluation of their immunological responses and antitumor effects

Objective(s):Tumor-associated antigen (TAA) subunit-based vaccines constitute promising tools for anticancer immunotherapy. However, a major limitation in the development of such vaccines is the poor immunogenicity of peptides when used alone.The aim of this study was to develop an efficient vaccine delivery system and adjuvant to enhance anti-tumor activity of a synthetic HER2/neu derived pept...

متن کامل

Systematic surface engineering of magnetic nanoworms for in vivo tumor targeting.

In the design of nanoparticles that can target disease tissue in vivo, parameters such as targeting ligand density, type of target receptor, and nanoparticle shape can play an important role in determining the extent of accumulation. Herein, a systematic study of these parameters for the targeting of mouse xenograft tumors is performed using superparamagnetic iron oxide as a model nanoparticle ...

متن کامل

A phase I/II clinical trial for adult recurrent glioma using 131i-tm-601, an iodinated peptide derived from scorpion venom

131I-TM-601 is a 36-amino acid peptide, called chlorotoxin (TM-601), derived from scorpion venom labeled with I-131. TM-601 binds a receptor on the surface of tumor cells, and not on normal cells. A single dose of 131I-TM-601 administered intracranially to human xenografted mouse models of glioma has been shown to extend survival up to 269% in multiple studies. 131I-TM-601 is in a multi-center ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 5 21  شماره 

صفحات  -

تاریخ انتشار 2013